My Publications

2025

D. Tortorella, M. Fontanesi, A. Micheli, M. Podda

An Empirical Investigation of Shortcuts in Graph Learning

In Graph-Based Representations in Pattern Recognition (pp. 147–156). Springer Nature Switzerland.

Published Conference

M. Fontanesi, A. Micheli, M. Podda

Relating Explanations with the Inductive Biases of Deep Graph Networks

In AIxIA 2024 – Advances in Artificial Intelligence (pp. 175–187). Springer Nature Switzerland.

Published Conference

M. Fontanesi, A. Micheli, M. Podda, D. Tortorella

Analyzing Explanations of Deep Graph Networks through Node Centrality and Connectivity

In Discovery Science (pp. 295–309). Springer Nature Switzerland.

Published Conference

L. Miglior, L. Simone, M. Podda, D. Bacciu

Towards Efficient Molecular Property Optimization with Graph Energy Based Models

In Proceedings of the 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (pp. 289–294). i6doc.com.

Published Conference

A. Dipalma, M. Fontanesi, A. Micheli, P. Milazzo, M. Podda

Sensitivity analysis on Protein-Protein Interaction Networks through Deep Graph Networks

BMC Bioinformatics, 26(124).

Published Journal

M. Podda, C. Savojardo, P. Luigi Martelli, R. Casadio, A. Sîrbu, C. Priami, A. Brozzi

A descriptor-free machine learning framework to improve antigen discovery for bacterial pathogens

PLOS ONE, 20(6), pp.1-22.

Published Journal

2024

R. De Lucia, A. Micheli, A. Parlato, M. Podda, L. Pedrelli, M. Parollo, L. Segreti, A. Di Cori, others

Predictive machine learning model for mechanical dilatation in transvenous lead extraction procedures

European Heart Journal Supplements, 26(Supplement_2), pp.ii82–ii82.

Abstract

M. Ninniri, M. Podda, D. Bacciu

Classifier-free graph diffusion for molecular property targeting

In 4th workshop on Graphs and more Complex structures for Learning and Reasoning - Colocated with AAAI 2024.

Published Conference

M. Fontanesi, A. Micheli, M. Podda

Explaining Graph Classifiers by Unsupervised Node Relevance Attribution

In Explainable Artificial Intelligence (pp. 63–74). Springer Nature Switzerland.

Published Conference

M. Ninniri, M. Podda, D. Bacciu

Classifier-Free Graph Diffusion for Molecular Property Targeting

In Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD (pp. 318–335). Springer Nature Switzerland.

Published Conference

M. Tolloso, S. G. Galfrè, A. Pavone, M. Podda, A. Sîrbu, C. Priami

How Much Do DNA and Protein Deep Embeddings Preserve Biological Information?

In Computational Methods in Systems Biology (pp. 209–225). Springer Nature Switzerland.

Published Conference

M. Fontanesi, A. Micheli, M. Podda

XAI and Bias of Deep Graph Networks

In Proceedings of the 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (pp. 41–46). i6doc.com.

Published Conference

M. Podda, S. Bonechi, A. Palladino, M. Scaramuzzino, A. Brozzi, G. Roma, A. Muzzi, C. Priami, A. Sîrbu, M. Bodini

Classification of Neisseria meningitidis genomes with a bag-of-words approach and machine learning

iScience, 27(3).

Published Journal

2023

D. Bacciu, F. Errica, A. Micheli, N. Navarin, L. Pasa, M. Podda, D. Zambon

Graph Representation Learning

In Proceedings of the 31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (pp. 1–10). i6doc.com.

Published Conference

D. Bacciu, F. Errica, A. Gravina, L. Madeddu, M. Podda, G. Stilo

Deep Graph Networks for Drug Repurposing with Multi-Protein Targets

IEEE Transactions on Emerging Topics in Computing, pp.1–14.

Published Journal

M. Fontanesi, A. Micheli, P. Milazzo, M. Podda

Exploiting the structure of biochemical pathways to investigate dynamical properties with neural networks for graphs

Bioinformatics, 39(11).

Published Journal

2022

A. Micheli, M. Podda

Deep Learning in Cheminformatics

In Deep Learning in Biology and Medicine (pp. 157–195). World Scientific Publishing.

Published Book chapter

2021

M. Podda, A. Sîrbu, C. Priami, A. Brozzi

A rigorous evaluation of embeddings-based vs. feature-based machine learning models for protein antigenicity prediction

In The 10th Italian Workshop on Machine Learning and Data Mining” (MLDM) – Part of the 20th International Conference of the Italian Association for Artificial Intelligence (AIxIA).

Abstract

M. Podda

Deep Learning on Graphs with Applications to the Life Sciences

Phd thesis

M. Podda, D. Bacciu

GraphGen-Redux: A Fast and Lightweight Recurrent Model for labeled Graph Generation

In International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.

Published Conference

M. Podda, P. Bove, A. Micheli, P. Milazzo

Classification of Biochemical Pathway Robustness with Neural Networks for Graphs

In Communications in Computer and Information Science (pp. 215–239). Springer International Publishing.

Published Conference

P. Milazzo, R. Gori, A. Micheli, L. Nasti, M. Podda

In silico modeling of biochemical pathways

Biomedical Science and Engineering, 4(s1).

Published Journal

2020

F. Errica, M. Podda, D. Bacciu, A. Micheli

A Fair Comparison of Graph Neural Networks for Graph Classification

In 8th International Conference on Learning Representations (ICLR).

Published Conference

M. Podda, D. Bacciu, A. Micheli

A Deep Generative Model for Fragment-Based Molecule Generation

In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS).

Published Conference

P. Bove, A. Micheli, P. Milazzo, M. Podda

Prediction of Dynamical Properties of Biochemical Pathways with Graph Neural Networks

In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS (pp. 32–43). SCITEPRESS.

Published Conference

M. Podda, D. Bacciu, A. Micheli, P. Milazzo

Biochemical Pathway Robustness Prediction with Graph Neural Networks

In Proceedings of the 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (pp. 121–126). i6doc.com.

Published Conference

D. Bacciu, A. Micheli, M. Podda

Edge-based sequential graph generation with recurrent neural networks

Neurocomputing, 416, pp.177–189.

Published Journal

D. Bacciu, F. Errica, A. Micheli, M. Podda

A gentle introduction to deep learning for graphs

Neural Networks, 129, pp.203–221.

Published Journal

2019

P. Bove, A. Micheli, P. Milazzo, M. Podda

Preliminary Results on Predicting Robustness of Biochemical Pathways through Machine Learning on Graphs

In Pre-proceedings of the 8th International Symposium “From Data to Models and Back (DataMod)”.

Abstract

D. Bacciu, A. Micheli, M. Podda

Graph generation by sequential edge prediction

In Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (pp. 95–100). i6doc.com.

Published Conference

2018

M. Podda, D. Bacciu, A. Micheli, R. Bellù, G. Placidi, L. Gagliardi

A machine learning approach to estimating preterm infants survival: development of the Preterm Infants Survival Assessment (PISA) predictor

Scientific Reports, 8(1).

Published Journal

2017

M. Podda, A. Micheli, D. Bacciu

Predicting mortality in low birth weight infants: a machine learning perspective

Msc thesis